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1 Introduction

Black hole physics provides us with a vast variety of phenomena for testing underlying

ideas of theoretical physics. This explains the constant attention to this topical issue,

as well as the burst of interest any time a new concept emerges in this area of research.

Superstring/M-theory has enriched physics with new ideas and currently is the main subject

of interest in mathematical physics. It allowed to intertwine different areas of theoretical

physics, e.g. gravity and conformal field theories.

There is a well known correspondence between black hole mechanics and thermo-

dynamics [1] that relates geometrical characteristics of a black hole to thermodynamical

ones. One of them, the subject of our interest here, – entropy – can be calculated us-

ing the Wald formula [2]. To be able to interpret this quantity as a genuine entropy, it

should be confirmed by statistical physics calculations. This was accomplished by per-

forming counting of the microstates [3, 4] in the “classical” limit. At this point, there

arises a question of comparison between microstate and “macrostate” entropies beyond

the classical approximation.

For extremal black holes the method of calculation of macrostate entropy was proposed

in [5]. It relies on the classical Einstein-Maxwell action and reduces the problem to finding

a black hole potential which encodes all the information needed to obtain the entropy,

which is given by the value of the black hole potential at its critical point. This method

allows one to trace back the evolution of the scalar fields in the whole space, but might

become difficult when considering higher order corrections which originate from the string

coupling and the α ′ expansion of the superstring action.

For this purpose another approach was proposed in [6]. It deals with horizon values of

the fields present in the theory by means of the so-called entropy function.

– 1 –



J
H
E
P
1
0
(
2
0
0
9
)
0
2
4

Taking into account terms coming from the superstring action (such as the Chern-

Simons term) allows one to achieve a matching between black holes microstate and

“macrostate” entropies [8].

Higher order corrections might be of interest from the classical point of view due to

the following problems:

1. small black hole – black hole with vanishing classical entropy and non-vanishing values

of mass. Once classically one obtains a zero value of the entropy, one naturally poses

the question what happens when taking into consideration higher order corrections

as well.

2. flat directions of the black hole potential and stability of the critical points. The

presence of flat directions reflects the symmetry of the scalar manifold. Therefore it

is interesting to know how the symmetry gets modified in the presence of higher order

corrections and, as a consequence, how flat directions get distorted and whether the

resulting critical point is stable or not.

The problem of small black holes is studied from different points of view [9].

In order to investigate the influence of higher order corrections on the solutions to the

attractor mechanism equations [10], we make use of the black hole potential approach and

the entropy function formalism. We established a direct relation between these methods

and found how the black hole potential is related to the entropy function. In addition,

we derive a formula (2.10) for the Hessian matrix of the black hole potential completely

within the entropy function formalism. A distinctive feature of this formula is that it can

be easily used even if deriving the expression of the black hole potential from the entropy

function proves to be problematic.

Previously, in the entropy function formalism not much attention was paid to the

stability issues, due to the fact that a truncation over the “problematic” sectors (those

where the flat directions reside, e.g. the axionic one in the stu model) was always considered.

Having at disposal the formula for the Hessian matrix allows us to study the stability of

the complete, non truncated version of the theory.

In the present work, we consider the most general case of higher order deriva-

tive corrections to the Einstein-Maxwell action involving both Riemann curvature ten-

sor Rµνρσ and electromagnetic field strength tensor F Λ

µν in any Lorentz covariant combina-

tions. From dimensional analysis it follows that the nth order correction should have the

form (Rµνρσ)m(F Λ

µν)2(n−m+1) with m = 0, . . . , n + 1. The indices are supposed to be con-

tracted in all possible ways by means of a metric gµν . The number of such terms grows very

fast with respect to n, but in the entropy function formalism they all lead to a much smaller

number of independent combinations. In this way we succeed in finding the corrections to

the black hole entropy induced by the higher order derivative corrections to action.

As it is known, usually, in order to calculate up to nth order the value of a function at a

critical point, one should know the solution to the criticality condition up to (n−1)th order.

Examining the form of the corrections to the entropy, one might easily observe that there

appears a problem starting from the first order. Namely, the first order correction to the
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entropy is supposed to be determined by the classical solution to the attractor mechanism

equations. Once the classical black hole potential possesses flat directions, not all moduli

are determined by the attractor mechanism equations, though this ambiguity does not

affect the classical value of the entropy. But in the first order this ambiguity shows up: the

entropy becomes dependent on the undetermined moduli. Evidently this fact contradicts

the second law of black hole thermodynamics and the attractor mechanism paradigm.

Nevertheless, a thorough analysis of the perturbative corrections shows that there exists

a sort of feedback from the first order solutions on the classical ones. In general, in order

to calculate the entropy up to nth order, one should have the solution up to nth order.

As it was mentioned above, nth order solution does not show up in the expression for the

entropy (at least to nth order), but it might not exist in the presence of flat directions.

This is related to the fact that, in order to find the nth order solution, one has to solve

a system of linear non-homogeneous equations with vanishing determinant. This system

contains as parameters moduli which are not defined in the previous orders. Some of

these parameters get fixed when requiring the system of equations to be consistent. In

this way the equations to nth order fix the solutions in previous orders. Exactly for this

reason the attractor mechanism remains valid in the presence of higher order derivative

corrections, as well.

We considered in detail an example of a stu dyonic black hole in heterotic string theory

compactified on T 6 or K3×T 2. In addition to previously known solutions [8, 11], we found

two new solutions. They are both non-BPS and one of them, moreover, corresponds to a

state with vanishing central charge Z [12]. In the classical limit the latter solution turns

out to be stable. Therefore we dwell mainly on the stability of the non-BPS Z 6= 0 solution,

which classically has two vanishing and four positive eigenvalues. We find that, when the

corrections are turned on, one of the previously vanishing eigenvalues remains zero, while

the other becomes positive.

We studied as well the small black hole limit and found that the two new solutions

mentioned above do not allow for such a limit, while the previously known ones do. There-

fore we studied the stability of these solutions, as well, and found that for both of them in

the small black hole limit the Hessian matrix has always at least one negative eigenvalue.

The paper is organized as follows. In section 2 we establish a relation between the two

methods for calculating the black hole entropy (2.6). The main result of this section is the

formula (2.10) yielding the Hessian matrix expressed in terms of the entropy function. In

section 3 we introduce the higher order corrections to the action, discuss their explicit form

and derive the expressions for the black hole effective potential (3.7) and entropy (3.16), up

to the second order. We speculate on properties of the corrections to the entropy both in

the case of small black holes and when the classical black hole potential has flat directions.

In section 4 we revisit a well known example of heterotic string theory compactified on T 6

or K3 × T 2 without neglecting axions. We demonstrate here that the corrections to the

entropy (4.18) do not depend on values of the scalars at infinity. We derive two new

non-BPS solutions and investigate their stability, as well as the stability of the previously

known ones. A special attention is paid to small black holes and the issue of their stability.

– 3 –
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2 Basics

Since the paper [5], it has been known how to calculate the entropy of a wide class

of extremal black holes. There an Einstein-Maxwell model coupled to scalar fields

was considered

S =

∫

d4x
√

− g

[

−R

2
+

1

2
Gab(φ) gµν ∂µφa∂νφ

b− 1

4
µ

ΛΣ
(φ)F

Λ

µνF
Σµν− 1

4
ν

ΛΣ
(φ)F

Λ

µν ∗ F
Σµν

]

(2.1)

and it was shown that the entropy of a black hole in a static, spherically symmetric and

asymptotically flat space-time is completely determined by the so-called black hole poten-

tial, which for the model (2.1) has the form

VBH(φ) = −1

2
(p

Λ
, q

Λ
)

(

µ
ΛΣ

+ ν
ΛΓ

µΓΠν
ΠΣ

ν
ΛΓ

µΓΣ

µΛΓν
ΓΣ

µΛΣ

)(

pΣ

q
Σ

)

. (2.2)

The entropy within this framework is given by the value of the black hole potential at

the horizon

S = πVBH(φh), (2.3)

where the moduli take critical values obtained from

∂VBH

∂φa
φ=φh

= 0. (2.4)

This approach naturally allows us to examine the stability (which guarantees that the

expression in (2.3) refers to the entropy of a physical object) of the critical points by

checking the positive definiteness of the Hessian matrix

Hab =
∂2VBH

∂φa∂φb
φ=φh

,

and it gives us the possibility to establish the presence of flat directions of the black hole

potential. Classically, the flat directions are not fraught with any problem. Namely, the

criticality condition of VBH might not fix uniquely the values of the scalar fields, and some

combinations of the fields might remain free, while the value of the entropy does not depend

on these combinations. The problem might be hidden in quantum correction terms which,

in general, might destabilize the flat direction (transforming it into a saddle critical point).

The presence of the additional terms – whether of quantum or classical origin – in the

action (2.1) leads to a modification of the black hole potential; there arises the so-called

effective black hole Veff potential, whose extreme value is equal to the entropy of the black

hole and whose critical points give the values of the scalar fields at the black hole horizon.

For the case of model (2.1) the effective potential Veff is equal to the black hole one VBH.

A revival of interest for the attractor mechanism was due to discovery of non super-

symmetric extremal black holes within the black hole potential approach firstly appeared

in [13]. Then an alternative approach – the entropy function formalism – for calculating

the entropy of a black hole with higher order derivative corrections was proposed in [6, 14].
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It may also be applied to calculate the entropy of a large class of systems with additional

degrees of freedom, e.g. rotating black holes, black strings, multi-center black hole config-

urations. Since we are also interested in stability issues, we first relate this approach to

the black hole potential one and derive the concept of the Hessian matrix in the entropy

function formalism. Let us recall that the latter is based on putting the theory on the

near-horizon background geometry and constructing the so-called entropy function which

can be easily written down once the Lagrangian is known

E(EI , φa) = 2π

[

e
Λ
q
Λ
−
∫

dθdϕ
√

− gL
]

,

where EI stands for all fields but the moduli. In this formalism the black hole entropy is

given by the value of the entropy function at the horizon. The horizon values EI
h and φa

h

of all fields are determined by resolving all criticality conditions simultaneously

∂E
∂EI E = Eh

φ = φh

= 0, (a)
∂E
∂φa E = Eh

φ = φh

= 0. (b) (2.5)

Since the entropy function formalism is more general, it encompasses the black hole

potential approach. One can obtain the black hole potential from the entropy function

as follows:

VBH(φ) = π−1 E(EI(φ), φ) (2.6)

where EI(φ) denotes the solution to the equations ∂E/∂EI = 0 in terms of the moduli.1 Of

course, one can find the black hole potential, provided it is possible to resolve this equation

explicitly. For example, in order to reproduce the black hole potential (2.2), one should fix

the near horizon geometry as AdS2 × S2

ds2 = −v1

(

r2dt2 − dr2

r2

)

+ v2

(

dθ2 + sin2 θdϕ2
)

, (2.7)

resolve Bianchi identities for the electromagnetic fields

F
Λ

01 = −e
Λ
(r), F

Λ

23 = p
Λ
sin θ (2.8)

and substitute the explicit dependence of EI = (eΛ, v1, v2) on φa

e
Λ

= −µ
ΛΣ
(

q
Σ
− ν

ΣΩ
p

Ω
)

, v1 = v2 = −1

2

[

µ
ΛΣ

p
Λ
p

Σ
+ µ

ΛΣ
(

q
Λ
− ν

ΛΛ′ p
Λ′

)(

q
Σ
− ν

ΣΣ′ p
Σ′

)]

(2.9)

back into the entropy function.

In many cases one cannot resolve the criticality conditions (2.5a) and hence derive the

black hole potential, therefore the entropy function formalism is more general. In order

to make it self-contained one should be able to answer the question about the stability,

that is to calculate the Hessian matrix in terms of the entropy function only. It becomes

important when one cannot deduce the explicit dependence of EI on φa.

1Attempts to construct the black hole potential from the entropy function were made as well in [7].
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From the formula (2.6) it follows that the Hessian matrix is equal to

Hab =
1

π

[

∂2E
∂EI∂EJ

∂EI

∂φa

∂EJ

∂φb
+

∂2E
∂EI∂φa

∂EI

∂φb
+

∂2E
∂EI∂φb

∂EI

∂φa
+

∂2E
∂φa∂φb

]

E = Eh

φ = φh

.

Supposing that one does not have the explicit form of EI(φ), let us try to express ∂EI/∂φa

through the entropy function. For this purpose it is sufficient to differentiate ∂E/∂EI = 0

with respect to φa, considering EI as a function of φa:

∂2E
∂EI∂EJ

∂EJ

∂φa
+

∂2E
∂EI∂φa

= 0 ⇒ ∂EI

∂φa
= −

(

∂2E
∂EI∂EJ

)−1
∂2E

∂EJ∂φa

which yields the following expression for the Hessian matrix:

Hab =
1

π

[

∂2E
∂φa∂φb

−
(

∂2E
∂EI∂EJ

)−1
∂2E

∂EI∂φa

∂2E
∂EJ∂φb

]

E = Eh

φ = φh

. (2.10)

Notice, that this expression is quite simple to deal with. It requires the knowledge of

the derivatives of the entropy function which are easily calculable. Amusingly enough,

for studying the stability of the solutions, one does not have to be able to resolve equa-

tions ∂E/∂EI = 0 in terms of the moduli in order to reconstruct the black hole potential.

This issue becomes important when considering higher order derivative corrections.

3 Higher order corrections

Now let us expand the considerations we made above by adding higher order derivative

terms to the action (2.1):

S =

∫

d4x
√

− g

[

−R

2
+

1

2
Gab(φ) gµν ∂µφa∂νφb − 1

4
µ

ΛΣ
(φ)F

Λ

µνF
Σµν

−1

4
ν

ΛΣ
(φ)F

Λ

µν ∗ F
Σµν

]

+

∫

d4x
√

− gLH(Rµνλσ , gµν , F
Λ

µν , φ)

(2.1′)

The last term corresponds to higher order derivative corrections coming, for example, from

the α ′-expansion of the heterotic string action [15]; its form will be specified later.

The entropy function corresponding to the model (2.1′) acquires an additional term

E(e, v, φ) = 2π

[

e
Λ
q
Λ

+ v2 − v1 −
1

2
µ

ΛΣ

(

v1

v2
p

Λ
p

Σ − v2

v1
e

Λ
e

Σ

)

− ν
ΛΣ

e
Λ

p
Σ

]

+ EH (3.1)

which is defined as an integral calculated on AdS2 × S2 background (2.7) with resolved

Bianchi identities (2.8)

EH(v1, v2, p, e, φ) = −1

4

∫

S2

dθdϕ
√

− gLH . (3.2)

– 6 –
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Since the contribution from the term EH is supposed to come from the perturbative ex-

pansion of the superstring action, we present it in the following form:

EH = α ′E1 + α ′2E2 + O(α ′3). (3.3)

Our goal is to construct the black hole potential corresponding to the action (2.1′). In

what follows we reserve the term “black hole potential” for a potential corresponding to

the classical action (2.1), and the term “effective black hole potential” – to the action (2.1′)

with higher order derivative corrections.

As it was demonstrated in the previous section, to obtain the effective potential one

should eliminate in the entropy function all fields except the moduli, using their equations

of motion. For this purpose we represent the entropy function in the form

E(e, v, φ) = E0(e, v, φ) + α ′E1(e, v, φ) + α ′2E2(e, v, φ) + O(α ′3) (3.4)

and for simplicity introduce again a notation EI = (v1, v2, e
Λ) for the “superfluous” fields.

It can be easily shown that the effective potential, up to the second order in α ′, is then

given by

Veff(φ) =
1

π

[

E(EI , φa) − α ′2

2
(HIJ)−1 ∂E1

∂EI

∂E1

∂EJ

]

E=E0

+O(α ′3), HIJ =
∂2E0

∂EI∂EJ
(3.5)

where E0 stands for the “classical” solutions (2.9) for the fields v1,2 and eΛ in terms of the

moduli. The matrix H−1 has a following block form:

H
−1

= − 1

2π







2VBH VBH eΛ

VBH 0 eΛ

eΣ eΣ −µΛΣ






(3.6)

with VBH and eΛ given in eqs. (2.2) and (2.9). Therefore we may represent the effective

potential in the form

Veff(φ) = VBH(φ) +
α ′

π
E1(E0(φ), φ) +

α ′2

π
E2(E0(φ), φ)

− α ′2

4π2

[

µ
ΛΣ ∂E1

∂eΛ

∂E1

∂eΣ
− 2

VBH

(

v1
∂E1

∂v1
+ e

Λ ∂E1

∂eΛ

)(

v1
∂E1

∂v1
+ v2

∂E1

∂v2

)]

+ O(α ′3)

(3.7)

with the right hand side, obviously, being calculated on the classical solution (2.9).

3.1 Explicit form of the corrections

Now we try to make our considerations more specific by defining the form of the corrections.

Although we are interested only up to α ′2 order corrections to the effective potential, the

formulae of this section might be easily written down for the corrections of any order.

Deriving the explicit form of higher order corrections is a quite sophisticated problem

and many efforts were devoted to investigation of their influence on black hole entropy,

see e.g. [16–19]. In this paper we consider the most general form of the corrections which

involve both Riemann curvature tensor Rµνρσ and field strength tensor Fµν .

– 7 –
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To the α ′1 order, the possible corrections allowed by dimensinal analysis have the

following schematic structure:

L(1)
H ∼ (Rµνρσ)2 + Rµνρσ(Fµν)2 + (Fµν)4,

where the Lorentz indices are supposed to be contracted with a proper number of inverse

metric gµν in all possible ways. This expression induces the following form of the first order

correction to the entropy function:

E1 = ER2 + ERF 2 + EF 4. (3.8)

Calculated on the AdS2×S2 background (2.7) and with the field strength given by eqs. (2.8),

the terms composing E1 are then given by

ER2 ∼ v1v2

[

α(1)

v2
1

+
α(2)

v1v2
+

α(3)

v2
2

]

,

ERF 2 ∼ v1v2

[(

α(4)
ΛΣ

v1
+

α(5)
ΛΣ

v2

)

eΛeΣ

v2
1

+

(

α(6)
ΛΣ

v1
+

α(7)
ΛΣ

v2

)

eΛpΣ

v1v2
+

(

α(8)
ΛΣ

v1
+

α(9)
ΛΣ

v2

)

pΛpΣ

v2
2

]

,

EF 4 ∼ v1v2

[

α(10)
ΛΣΠΩ

eΛeΣeΠeΩ

v4
1

+ α(11)
ΛΣΠΩ

eΛeΣeΠpΩ

v3
1v2

+ · · · + α(14)
ΛΣΠΩ

pΛpΣpΠpΩ

v4
2

]

,

(3.9)

where all α(n) are functions of φa.

Very schematically we present, as well, the second order corrections to the

entropy function

ER3 ∼ v1v2

[

1

v3
1

+
1

v2
1v2

+
1

v1v2
2

+
1

v3
2

]

,

ERF 4 ∼ v1v2

[

1

v1
+

1

v2

] [

e4

v4
1

+
e3p

v3
1v2

+ · · · + p4

v4
2

]

,

ER2F 2 ∼ v1v2

[

1

v2
1

+
1

v1v2
+

1

v2
2

] [

e2

v2
1

+
ep

v1v2
+

p2

v2
2

]

,

EF 6 ∼ v1v2

[

e6

v6
1

+
e5p

v5
1v2

+ · · · + p6

v6
2

]

. (3.10)

Here the coefficients are assumed to depend on the scalar fields φa, but their dependence

is not written explicitly for the sake of simplicity. The function E2 (3.3), in turn, is given

by the sum

E2 = ER3 + ER2F 2 + ERF 4 + EF 6.

Each of the functions of eqs. (3.9) and (3.10) turns out to be an eigenfunction of the

operator appearing in the expression for the effective potential (3.7)
[

v1
∂

∂v1
+ v2

∂

∂v2

]

ERnF m = (2 − n − m) ERnF m.

This allows us to rewrite the effective potential (3.7) in the following form:

πVeff(φ) = E(e, v, φ) − α ′2

4π

[

µ
ΛΣ ∂E1

∂eΛ

∂E1

∂eΣ
+

2

VBH

(

ERF 2 + 2 EF 4

)

(

v1
∂E1

∂v1
+ e

Λ ∂E1

∂eΛ

)]

,

(3.7′)

where, as before, the right hand side is supposed to be taken on the solution (2.9).
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3.2 Corrections to the value of the entropy

In the previous section we derived the effective black hole potential which encodes the

information about the entropy of a black hole. Now we are going to calculate the value of

the entropy up to the second order in α ′. So, we should extremize the effective black hole

potential with respect to the scalar fields

∂Veff

∂φa
= 0. (3.11)

In order to resolve these equations perturbatively let us expand the effective potential and

the scalar fields in series on α ′ up to the second order

Veff = V0 + α ′V1 + α ′2V2 + O(α ′3), φa = φa
0 + α ′φa

1 + α ′2φa
2 + O(α ′3). (3.12)

The expansion of Veff is nothing but a concise form of the eq. (3.7′). Being written in full

details it gives

V0 = π−1 E0 = VBH, V1 = π−1 E1,

V2 =
1

π
E2 −

1

4π2

[

µ
ΛΣ ∂E1

∂eΛ

∂E1

∂eΣ
+

2

VBH

(

ERF 2 + 2 EF 4

)

(

v1
∂E1

∂v1
+ e

Λ ∂E1

∂eΛ

)] (3.13)

where all E-terms are calculated on the “classical” solution (2.9). After substitution of the

expansions (3.12) into the criticality condition (3.11) one immediately derives

∂V0

∂φa
0

= 0, (a)

∂2V0

∂φa∂φb
0

φb
1 = −∂V1

∂φa
0

, (b)

∂2V0

∂φa∂φb
0

φb
2 = −∂V2

∂φa
0

− ∂2V1

∂φa∂φb
0

φb
1 −

1

2

∂3V0

∂φa∂φb∂φc
0

φb
1φ

c
1, (c)

(3.14)

where the subscript zero means that the corresponding expression should be taken

upon φa = φa
0. Although, in order to obtain an extreme value of a function up to α ′n

order, it is enough to know a solution to criticality condition up to α ′(n−1) order, we wrote

down as well an equation (3.14c) defining the second order solution φa
2. It relates to a

subtle effect that we illustrate on a simpler example.

Let us suppose that we are interested in calculating the value of the entropy up to α ′1

order. In this case we need to know only a “classical” solution φa
0 to the eq. (3.14a), so that

one might think that eqs. (3.14b) are of no importance, since they define the value of the

first order solution φa
1. The subtlety comes out when the “classical” black hole potential V0

has a flat direction. In this case the matrix of the second derivatives (which is nothing but

a Hessian matrix) becomes degenerate and not all of φa
0 might be determined from (3.14a).

The undetermined scalar fields appear then in the right hand side of (3.14b). This fact

might make the system of eqs. (3.14b) to become inconsistent, since the Hessian matrix

is degenerate.
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Supposing that classical solutions to eqs. (3.14a) exist and that perturbation the-

ory is applicable, we think that including the corrections cannot remove all classical so-

lutions. Otherwise the situation would be quite unphysical. Therefore, we impose the

condition that (3.14b) be consistent. This condition might fix some of the previously un-

determined φa
0. If the eqs. (3.14b) turns out to be consistent identically, it means that

the symmetry of the first order corrections to the effective potential coincides with the

symmetry of the “classical” effective potential.

When one is interested in corrections up to α ′2, then one has to check also that (3.14c)

is consistent. The extreme value of the effective potential (that is, the entropy in fact) is

then given by the expression

Veff.extr = V0(φ0) + α ′V1(φ0) + α ′2

[

V2(φ0) −
1

2

∂V1

∂φa
0

φa
1

]

. (3.15)

Let us analyse this expression. First of all, the black hole potential (2.2) is a homogeneous

function of degree two in the charges pΛ and q
Λ
. Then, the “classical” solution φ0 is

homogeneous of zero degree on the charges. It immediately follows from the fact that VBH

is homogeneous and φ0 is a solution to a homogeneous equation (2.4). In order to write

down the dependence of the entropy on the charges, let us for simplicity combine them to

form a symplectic charge vector

P
Λ

=
(

p
Λ
, q

Λ

)

.

Calculating the expressions E1,2 on the “classical” solutions according to formulae (3.9)

and (3.10) and taking into account eqs. (3.13), (3.14) and (3.15), one gets

S = S0 + α ′

[

A +
1

S0
A

ΛΣ
P

Λ
P

Σ
+

1

S 2
0

A
ΛΣΠΩ

P
Λ
P

Σ
P

Π
P

Ω

]

+
α ′2

S0

[

B +
1

S0
B

ΛΣ
P

Λ
P

Σ
+

1

S 2
0

B
ΛΣΠΩ

P
Λ
P

Σ
P

Π
P

Ω
+

1

S 3
0

B
Λ1 . . . Λ6

P
Λ1 . . . P

Λ6

]

+ O(α ′3). (3.16)

The coefficients A,A
ΛΣ

, A
ΛΣΠΩ

and B,B
ΛΣ

, . . . are composed of the previously introduced

functions α(n), µ
ΛΣ

and ν
ΛΣ

and in general depend on the “classical” values of the scalar

fields that are homogeneous of the zero degree on the charges. The explicit form of these

coefficients depends on the model one considers and, if one considers higher dimensional

theory, on the possible compactifications to four dimensions. Nevertheless, the structure

of the contributions coming from the higher derivatives remains the same.

The generalization of this formula for higher order derivative corrections is straight-

forward. We see that really all the series is built out of two quantities: the classical value

of the entropy (proportional to VBH), which is quadratic in the charges for the extremal

black holes in D = 4, and the classical values of the scalar fields, which are homogeneous

of degree zero.

Formula (3.16) is an agreement with the result obtained for the one-loop correction to

the Bekenstein-Hawking entropy [17] when only the R2 term is present in the action (2.1′).

As we have noticed before, the coefficients A and B (with any number of indices)

in (3.16) depend on the classical values of the scalar fields. If the black hole potential VBH
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has a flat direction, this means that not all of the scalar fields get fixed. This is not a

problem for the VBH, since its value does not depend on the scalars which are not fixed.

But the first order correction might depend on these not fixed values. This means that black

hole entropy depends on the values of the non-fixed scalars which can change continuously.

This fact threatens the attractor mechanism paradigm and can induce a violation of the

second law of black hole thermodynamics. Really, such a violation does not occur and

the attractor mechanism paradigm is preserved since once a flat direction is present, the

system of eqs. (3.14b) becomes degenerate and to possess a solution its right hand side

should satisfy some consistency condition, which might fix some of the previously free

scalar fields φa
0. If not all of the scalars φa

0 get fixed, then the group symmetry of the higher

derivative corrections is a subgroup of the symmetry of the black hole potential, hence the

higher order corrections will not depend on these non-fixed scalars and, consequently, black

hole entropy will not depend on them as well. This means that the attractor mechanism

remains valid even in the presence of the higher order corrections.

Looking at the eq. (3.16) one sees that higher order corrections become singular when

considering small black holes. Once VBH is equal to zero, the perturbative expansion is

not valid anymore. And there arises a question whether quantum effects might cure small

black holes. This will the subject of a forthcoming analysis, whereas for the time being we

limit ourselves to just some remarks. In realistic models the singularity might be removed

when along with S0 = 0 the coefficients A and B tend to zero as φa = φa
0 in a way such

that the corresponding fractions in (3.16) remain finite.

4 Application to the stu model

In order to shed light on specific features of the effect of quantum corrections in the case

of small black holes or when flat directions are present, we are going to revisit some well

known examples where both such features are present. In particular we consider the stu

model with higher order corrections stemming from compactification of the heterotic string

theory to four dimensions [8, 11]. The classical non-BPS solution for this model possesses

two flat directions [20] in the axionic sector of its moduli space. In addition, this example

allows us to investigate small black holes.

In order to derive the form of the higher order corrections to this model we take the

action of the heterotic string model [15], with all α ′ order terms calculated, and truncate

it to six dimensions. Being afterwards reduced to four dimensions it corresponds to the stu

model with higher order derivative terms.

We perform our computations directly in six dimensions since dimensional reduction of

the α ′ corrections to four dimensions might be a topic of independent research. Moreover,

working in six dimensions makes it easier to take into consideration the gravitational Chern-

Simons term [8, 11].

We will follow the strategy given in [11] and, in order to simplify the comparison of

the results, we will mostly follow the notations by [11]. The difference of our consideration

from that of [11] is that we preserve all the scalar fields – axions and dilatons – present in
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the theory, since the axion fields turn out to play an important role when it comes to the

question of stability.

The action [15] we start with is the bosonic part of the heterotic string theory action

truncated to six dimensions. It describes the coupling of a two-form field B
MN

and a dilaton

field Φ to six-dimensional Einstein gravity

S =
1

32π

∫

d6x
√

− G e−Φ×

×
[

R + ∂
M

Φ∂
M

Φ − 1

12
H

MNK
H

MNK
+

α ′

8
R̄

MNKL
R̄

MNKL
+ α ′3∆L3

]

+ . . .

where

R̄
M

NPQ
= R

M

NPQ
+ ∇

[P
H

M

Q]N
− 1

2
H

M

R[P
H

R

Q]N
. (4.1)

Here the term ∆L3 is of the forth order in the curvature R̄
MNKL

. The field strength H
PQR

includes also a gravitational Chern-Simons term

H
PQR

= ∂
P
B

QR
+ ∂

Q
B

RP
+ ∂

R
B

PQ
− 3α ′

(

Ω
PQR

+ A
PQR

)

,

Ω
PQR

=
1

2
Γ

N

PM
∂

Q
Γ

M

NR
+

1

3
Γ

N

PM
Γ

M

QK
Γ

K

NR
+ antisym. on P,Q,R,

A
PQR

=
1

4
∂

P

(

Γ
M

QN
H

N

MR

)

+
1

8
H

M

PN
∇QH

N

MR
− 1

4
R

MN

PQ
H

RMN

+
1

24
H

M

PN
H

S

QM
H

N

RS
+ antisym. on P,Q,R.

As prescribed in [11], one may dualize the field strength H
PQR

into a new one K
PQR

which

is an exact three-form

K
PQR

= ∂
P
C

QR
+ ∂

Q
C

RP
+ ∂

R
C

PQ
,

obeying, obviously, the Bianchi identities. To this end, one adds the term

∫

d6xε
MNKPQR

K
MNK

(

H
PQR

+ 3α ′Ω
PQR

)

into the original action (4.1) and eliminates the field strength H
PQR

. We postpone the

elimination of H
PQR

for a while, for a reason to be clarified later.

Dealing with the Chern-Simons term is a little bit tricky [11] and consists in maintain-

ing the Lorentz covariance of the Lagrangian. We succeeded in singling out a manifestly

covariant part of the Lagrangian by adding total derivative terms, in such a way that the

second derivatives of the four dimensional electromagnetic potentials originating in the six

dimensional metric disappear.

In order to be able to interpret the model (4.1) as an ancestor of the stu model, one

should clarify the field content of the theory. First of all, the six dimensional metric ten-

sor2 G
MN

when reduced to four dimensions produces a four dimensional metric tensor gµν ,

two vector fields A1,2
µ and three scalar fields – two dilatons u1, u2 and one axion c. Then, the

2we assume the splitting of the six dimensional indices M, N, K, . . . = 0, 1, . . . , 5 into four dimen-

sional µ, ν, ρ, . . . = 0, 1, 2, 3 and two dimensional m, n, k, . . . = 4, 5 ones
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two-form potential C
MN

produces a four dimensional two-form C
(4)
µν , two vector fields A3,4

µ

and one axion Cmn = b ǫmn. In four dimensions a two-form C
(4)
µν is dual to a scalar; this

duality gives rise to another axion a. Finally, the original scalar field Φ gives rise to a four

dimensional dilaton us. So, we end up with a four dimensional metric tensor, four vector

fields and six real scalars – three axions a, b, c and three dilatons u1, u2, us (more precisely,

exponentials of the dilatons).

The entropy function formalism in this case is based on putting the theory on a six-

dimensional background

ds2
(6) = ds2

(4) + Gmn

(

dxm + Am−3
µ dxµ

) (

dxn + An−3
ν dxν

)

, (4.2)

where the two-dimensional metric tensor Gmn is parameterized as follows [21]:

Gmn =

(

u2
1 + c2 u2

2 −c u2
2

−c u2
2 u2

2

)

. (4.3)

The connections Am−3
µ are chosen in the following form:

A1
µ =

(

2 r e1, 0, 0, 0
)

, A2
µ = (2 r e2, 0, 0,− p2

2π
cos θ). (4.4)

Hence, in what follows they will give the so-called magnetic configuration corresponding

to the D0 − D4 branes. The other two vector fields coming from C
MN

are equal to

A3
µ =

( 1

8
r e3, 0, 0, 0

)

, A4
µ =

( 1

8
r e4, 0, 0,− p4

32π
cos θ

)

. (4.5)

The electric potentials eΛ are dynamical fields; therefore we do not put them equal to zero

ad hoc, as their values are to be fixed when minimizing the entropy function.

In the entropy function formalism one should fix the values of the scalars at the horizon

of the black hole. Thus we parameterize the dilaton field as follows [11]:

e−Φ =
us

64π2u1u2

From a four dimensional perspective the field strength K
MNK

is related to the vector

potentials and axions in the following way:

Kµνρ =
us

64π2u2
1u

2
2

√

− ggστ ǫτµνρ a,σ +3K[µνnAn−3
λ] + 3K[µmnAm−3

ν An−3
λ]

Kµνm = −Fm−1
µν − b ǫmnFn−3

µν + 2An−3
[µ Kν]mn

Kµmn = b,µ ǫmn

and, therefore, its non-zero components are given by the expressions

K013 =
1

16π
p2(16b e1 − e4) cos θ, K014 =

e3

8
+ 2b e2, K015 =

e4

8
− 2b e1, (4.6)

K023 = − 1

16π
(16b e1p2 + e4p4)r sin θ, K234 = −bp2

2π
sin θ, K235 = − p4

32π
sin θ. (4.7)
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As it has been mentioned above, the field strength H
MNK

should be eliminated by means

of its equations of motion. Since we perform our calculations up to α ′2 order, one has to

resolve these equations of motion up to the α ′2 order, what seems to be quite sophisticated

due to the nonlinear nature of the action (4.1). In order to eliminate H
MNK

, we perform

the following trick [8]: we use the Ansatz (dictated by the symmetry of the problem) for

its non-vanishing components

H013 = h1 cos θ, H014 = h2, H015 = −2π

p2
h1,

H023 = h3r sin θ, H234 = h4 sin θ, H235 = h5 sin θ
(4.8)

and include the fields hi in the set of dynamical fields, with respect to which the entropy

function is to be minimised

∂E
∂hi

=
∂E
∂eΛ

=
∂E
∂v1

=
∂E
∂v2

= 0, (a)

∂E
∂a

=
∂E
∂b

=
∂E
∂c

=
∂E
∂u1

=
∂E
∂u2

=
∂E
∂us

= 0. (b)

(4.9)

The entropy function acquires the form

E = 2π

(

e1q1 + e3q3 +
usv2

4
− usv1

4
− 16bh1π − 32bh4πe1 − 32bh5πe2 − 2h5πe3

+2h4πe4 ae4p2

4π
− h2p

4

2
+

ae2p4

4π
− h2

3us

16v2
+

h3h4e
1us

4v2
− h2

4(e
1)2us

4v2
+

h3h5e
2us

4v2

− h4h5e
1e2us

2v2
− h2

5(e
2)2us

4v2
+

h2
4usv1

16u2
1v2

+
ch4h5usv1

8u2
1v2

+
h2

5usv1

16u2
2v2

+
c2h2

5usv1

16u2
1v2

+
u2

2(p
2)2usv1

64π2v2
− h2

2usv2

16u2
1v1

− u2
1e

2
1usv2

4v1
− c2u2

2e
2
1usv2

4v1
+

cu2
2e1e2usv2

2v1

− u2
2e

2
2usv2

4v1
− c2π2h2

1usv2

4u2
1(p

2)2v1
− π2h2

1usv2

4u2
2(p

2)2v1
+

cπh1h2usv2

4u2
1p

2v1

)

+ O(α ′) .

(4.10)

Here, for the sake of brevity, we avoid reporting the explicit expression we derived for the

first α ′ order corrections. When minimizing this expression, we perform an expansion of

all dynamical fields over α ′, i.e.

a = a(0) + α ′a(1) + . . . , b = b(0) + α ′b(1) + . . . , etc.
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In this way one gets “classical” solutions to (4.9)

e1
(0) =

1

4πq1

√

−p2p4q1q3, e2
(0) = e4

(0) = 0,

e3
(0) =

1

4πq3

√

−p2p4q1q3, (4.11)

v
(0)
1 = v

(0)
2 =

1

8π2

(

e−α2 + eα2
)

p2q3 (4.12)

h
(0)
1 = −h

(0)
3 = − 1 − e2α1

1 + e2α1

p2q3

4π2
, h

(0)
2 = − 1

2πp4

√

− p2p4q1q3, (4.13)

h
(0)
4 = − 1 − e2α1

1 + e2α1

√

− p2p4q1q3

2πp4
, h

(0)
5 =

q3

2π
, (4.14)

a(0) = 4π
1 − e2α1

1 + e2α1

√

− q1q3

p2p4
, b(0) = − 1

16

1 − e2α2

1 + e2α2

√

−p4q1

p2q3
, (4.15)

c(0) = − 1 − e2α3

1 + e2α3

√

−p2q1

p4q3
, u

(0)
1 =

√

4 eα1+α3

(1 + e2α1)(1 + e2α3)

√

− q1

p4
, (4.16)

u
(0)
2 =

√

eα1(1 + e2α3)

eα3(1 + e2α1)

√

q3

p2
, u(0)

s =
16πeα2

1 + e2α2

√

−p4q1

p2q3
. (4.17)

Here the three real parameters αi are restricted by one condition [22]

α1 + α2 + α3 = 0,

so that the presence of two independent unconstrained parameters indicates the presence

of two flat directions.

The charges above are connected with standard stu black hole charges by the following

transformations:

q1 = 4π Q0, q3 = −P 1

2
, p2 =

P 3

2
, p4 = −4π P 2.

One can check this by making a transformation from SO(2, 2) to (SU(1, 1)/U(1))3 basis [22,

23].

Näıve substitution of the zero order solution into the entropy function makes it de-

pendent on these parameters. This effect appears to contradict the attractor mechanism

paradigm. However, a subtler analysis shows that these parameters get fixed and the

correctness of the attractor mechanism is restored on the quantum level too.

To illustrate how the dependence on these parameters drops out, we present in details

the first order correction to the entropy. So, the “classical” solution (4.11) yields the value

of the entropy up to the α ′1 order

E =
√

−p2p4q1q3 + 16π2α ′eα2
3 + 2e2α2 + 3e4α2

(1 + e2α2)3

√

−p4q1

p2q3
+ O(α ′2).

– 15 –



J
H
E
P
1
0
(
2
0
0
9
)
0
2
4

Let us note that even including axions the non-BPS solution the first order correction to the

entropy does not contain any contribution form the Chern-Simons term, in an agreement

with [11]. Sticking to the first order approximation for the entropy, the only thing to

know about the first order solution to the eq. (4.9) is that it exists. In general, this is

not guaranteed automatically, since the matrix of the second derivatives of the entropy

function is degenerate. In the case under consideration the first order solution exists if

α2 = 0.

In this case the first order solution acquires the following form:

h
(1)
1 =

a1p
2
√

− p2p4q1q3

16π3q1
, h

(1)
2 = − 32e2α1πq1

(1 + e2α1)2
√

− p2p4q1q3

,

h
(1)
5 = −8

(

−1 + e2α1
)2

π

(1 + e2α1)2 p2
,

h
(1)
3 =

(

1 + e2α1
)

a1(p
2)2p4q3 − 96

(

−1 + e2α1
)

π3
√

− p2p4q1q3

16 (1 + e2α1)π3
√

− p2p4q1q3

,

h
(1)
4 = −

(

1 + e2α1
)

a1(p
2)2p4q3 + 64

(

−1 + e2α1
)

π3
√

− p2p4q1q3

8 (1 + e2α1)π2p2p4q3
,

e1
(1) = − 4πp4

√

− p2p4q1q3

, e3
(1) =

4πp4q1

q3

√

− p2p4q1q3

,

e2
(1) = e4

(1) = 0, v
(1)
1 = v

(1)
2 = 0,

u
(1)
1 =

e−α1

8 (1 + e2α1)3 πp2(p4)2
√

− q1

p4 q3

[

−128e2α1
(

−1 + e4α1
)

πb1p
2q3

√

−p2p4q1q3+

+p4
(

128e2α1
(

1+6e2α1 +e4α1
)

π3q1+
(

−1+e2α1
) (

1+e2α1
)3

a1p
2
√

−p2p4q1q3

)]

,

u
(1)
2 =

8
(

−1 + e2α1
)

(

(

1 + e2α1
)

b1(p
2)2q2

3 −
(

−1 + e2α1
)

π2
√

−p2p4q1q3

)

(1 + e2α1)2 (p2)2
√

q3

p2

√

−p2p4q1q3

,

c(1) = − p2q1

16 (1 + e2α1)3 π (−p2p4q1q3) 3/2

[

−1024e2α1
(

1 + e2α1
)

πb1p
2q3

√

−p2p4q1q3+

+p4
(

−1024e2α1
(

−1 + e2α1
)

π3q1 + 4
(

1 + e2α1
)3

a1p
2
√

−p2p4q1q3

)]

,

u(1)
s = − 128π3

√

−p2p4q1q3

(p2)2q2
3

,

Let us note that the two scalar fields (in our case these are a(1) and b(1)) remain undefined

in this approximation. With vanishing α2 the first order correction to the entropy does not

– 16 –



J
H
E
P
1
0
(
2
0
0
9
)
0
2
4

depend on any free parameter anymore and the second order correction acquires a much

simpler form, so that we may write it down as

E =
√

− p2p4q1q3 + 16π2α ′

√

−p4q1

p2q3
− 16π4α ′2 p4q1

p2q3

1 − 34eα1 + e4α1

√

− p2p4q1q3 (1 + e2α1)2
+ O(α ′3).

Performing analogous steps to second order, one can check that requiring the existence

of the second order corrections to the solution of eqs. (4.9) yields α1 = 0. The solution we

obtained in this way, corresponding to αi = 0, coincides with the axion free solution given

in [8, 11]. The only difference is that we derived this solution keeping the full axion dy-

namics, without truncation. It is only on the horizon that the axion contribution vanishes.

The value of the entropy up to the second order is then given by

E =
√

− p2p4q1q3 + 16π2α ′

√

−p4q1

p2q3
− 128π4α ′2 p4q1

p2q3

1
√

− p2p4q1q3

+ O(α ′3). (4.18)

One can see that this expression shares the general features pointed out in (3.16).

Exact solutions. Despite the cumbersome and entangled structure of the above non-

BPS perturbative solutions to the extremization condition of the entropy function, one can

cast them in exact form3

v1 = v2 =
p2q3

4π2
,

h2 = −
√

−p4q1p2q3

2πp4

1
√

1 + 32π2α′

p2q3

, h5 =
q3

2π
,

e1 =

√

−p4q1p2q3

4πq1

√

1 +
32π2α′

p2q3
, e3 =

√

−p4q1p2q3

4πq3

1
√

1 + 32π2α′

p2q3

,

u1 =

√

− q1

p4

1
√

1 + 32π2α′

p2q3

, u2 =

√

q3

p2
, us = − 8πp4q1

√

−p4q1p2q3

1
√

1 + 32π2α′

p2q3

,

(4.19)

for the charges

q1 < 0, q3 > 0, p2 > 0, p4 > 0. (4.20)

Once the close form of the solution is obtained, one can see that the perturbation

expansion that we were performing is valid when

32π2α ′

|p2q3|
≪ 1.

If one fixes the value of α ′, then one may understand this formula as a condition on

the charges

|p2q3| ≫ 1, (4.21)

3only non-vanishing fields are written down
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when classical effects become dominant. As we will see later, the condition (4.21) fails for

small black holes.

In the paper [8] another exact non-BPS solution was found, which in our nota-

tions reads 3

v1 = v2 = −p2q3

4π2

(

1 − 32π2α ′

p2q3

)

,

h2 = −

√

− p4q1p2q3

2πp4

√

1 − 32π2α′

p2q3
, h5 =

q3

2π

(

1 − 32π2α ′

p2q3

)

,

e1 =

√

−p4q1p2q3

4πq1

√

1 − 32π2α′

p2q3
, e3 =

√

− p4q1p2q3

4πq3

1
√

1 − 32π2α′

p2q3

,

u1 =

√

q1

p4
, u2 =

√

− q3

p2

√

1 − 32π2α′

p2q3

, us =
8πp4q1

√

− p4q1p2q3

1
√

1 − 32π2α′

p2q3

,

(4.22)

which is valid for the following charges:

q1 < 0, q3 < 0, p2 > 0, p4 < 0. (4.23)

Both solutions correspond to the same value of the entropy

S =
√

− p2p4q1q3

√

1 +
32π2α′

|p2q3|
. (4.24)

In the classical limit α ′ = 0 the Hessian matrix of the solutions (4.19) and (4.22) has the

following eigenvalues:

λ1 = λ2 = 0, λ3 = 2|p4|
√

− p2p4q3

q1
, λ4 =

|p2q3|
64π2

√

− p2q3

p4q1
, (4.25)

λ5 = 2p2

√

− p2p4q1

q3
, λ6 =

(p4)2q2
3 + 256(p2)2q2

3 +
(p4)2(p2)2

16π2
√

− p2p4q1q3

.

When turning on the quantum effects, one finds that the eigenvalue λ1 remains equal to

zero, while λ2 acquires a positive correction

λ2 = 32π4|p4|
√

− p4

p2q1q3

(p4)2 + 4096π2q2
3

16π2(p4)2q2
3 + (p2)2(p4)2 + 4096π2q2

3(p
2)2

α ′2 + O(α ′3), (4.26)

so that one can say that the solutions are “stable”.
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To complete the list of solutions, we present as well two additional solutions. One of

them, found in [8], is a BPS solution (see footnote 3 on p.17)

v1 = v2 = −p2q3

4π2

(

1 − 32π2α′

p2q3

)

,

h2 = −

√

p2p4q1q3

2πp4

1 − 32π2α′

p2q3
√

1 − 64π2α′

p2q3

, h5 =
q3

2π

(

1 − 32π2α′

p2q3

)

,

e1 =

√

p2p4q1q3

4πq1

√

1 − 64π2α′

p2q3
, e3 =

√

p2p4q1q3

4πq3

1
√

1 − 64π2α′

p2q3

,

u1 =

√

√

√

√− q1

p4

1 − 32π2α′

p2q3

1 − 64π2α′

p2q3

, u2 =

√

− q3

p2

√

1 − 32π2α′

p2q3
, us =

8π
√

p4q1

p2q3
√

1 − 64π2α′

p2q3

(4.27)

and is valid for the charges

q1 > 0, q3 < 0, p2 > 0, p4 < 0.

The entropy is then given by

S =
√

p2p4q1q3

√

1 +
64π2α′

|p2q3|
. (4.28)

The other solution acquires no α ′ corrections

v1 = v2 =
p2q3

4π2
, e1 =

p4

4π

√

p2q3

p4q1
, e3 =

p2

4π

√

p4q1

p2q3
, (4.29)

h2 = − q1

2π

√

p2q3

p4q1
, h5 =

q3

2π
, u1 =

√

q1

p4
,

u2 =

√

q3

p2
, us = 8π

√

p4q1

p2q3
.

It is valid for the charges

q1 > 0, q3 > 0, p2 > 0, p4 > 0

and the corresponding entropy is equal

S =
√

p4q1p2q3.

Despite the fact that it has no quantum corrections, this solution is non-BPS but with

vanishing central charge. These two solutions are stable in the classical limit, and we

suppose that quantum effects do not spoil this feature.
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Small black holes. Small black holes are of great interest and are studied very inten-

sively (see e.g. [9, 24, 25]) since they seem to have a quantum nature. Very little is known

about the stability of small black holes [26, 27]. The aim of this paragraph is to fill this gap

at least partially and to answer the question whether small black hole solutions of the stu

model are stable or not.

Out of the solutions derived in closed form in previous section, only two admit small

black hole limits, i.e. a 1/2-BPS (4.27) and a non-BPS Z 6= 0 (4.22), solutions. The

remaining two solutions are non-BPS and do not contain small black holes (one of them,

i.e. the non-BPS Z = 0 solution, remains even unaffected by quantum corrections). By

definition, a small black hole has vanishing classical entropy. In the solutions reported in

the previous section, the small black hole limit corresponds to

q3 = 0. (4.30)

When this limit is considered, only the two solutions (4.27) and (4.22) remain regular,

while for the remaining two the radii of the AdS2 and S2 spaces go to zero. Furthermore,

the non-BPS Z = 0 solution (4.29) has vanishing entropy, whereas the non-BPS Z 6= 0

solution (4.19) has the same (non vanishing) value of the entropy as the solution (4.22).

One can easily understand that the perturbation theory over the parameter α ′ fails

for small black holes. Indeed the genuine parameter to make a perturbative expansion is q3

for small black holes and 1/q3 for large ones.

Taking the limit (4.30) in the solutions (4.22) one gets the non-BPS small black

hole solution

v1 = v2 = 8α′, h2 = 2

√

2α ′
q1

p4
, h5 = −16πα′

p2
, e1 = −

√

2α ′
p4

q1
,

e3 = − p2

16π2

√

p4q1

2α ′
, u1 =

√

q1

p4
, u2 =

4
√

2π
√

α′

p2
, us =

√

2p4q1

α ′
, (4.31)

with the corresponding entropy

S = 4π
√

2α ′p4q1.

Calculating the Hessian matrix on the solution (4.31), one obtains the

following eigenvalues:

λ1 = 0, λ2 = −(p2)4(p4)2 + 36(8π)6(p2)2 (α′)2 + 9(4π)6(p4)2 (α′)2

512
√

2π3(p2)2
√

p4q1α′

,

λ3 = −16π

3
p4

√

2α ′
p4

q1
, λ4 = −

√
2

π

(p2)2p4q1 + 4π2α′2

√

p4q1α′

, λ5 = 0, λ6 = 0.

(4.32)

One sees that λ2,4 < 0 and λ3 > 0, which means that the solution (4.31) is not stable.
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Now, taking the limit (4.30) in the solutions (4.27) one gets the BPS small black

hole solution

v1 = v2 = 8α′, h2 = 2

√

− q1

α ′p4
, h5 = −16πα′

p2
, e1 = 2

√

− α ′
p4

q1
,

e3 = − p2

32π2

√

−p4q1

α ′
, u1 =

√

− q1

2p4
, u2 =

4
√

2π
√

α′

p2
, us =

√

−p4q1

α ′
, (4.33)

with the corresponding entropy

S = 8π
√

−α ′p4q1.

In this case two of the eigenvalues become zero, three of them become positive and one

becomes negative

0, 0,
a1 +

√

a2
1 + b1

c1
,

a1 −
√

a2
1 + b1

c1
,

a2 +
√

a2
2 + b2

c2
,

a2 −
√

a2
2 + b2

c2
,

where

a1 = 25((p2)2p4)2 + 1145(4π)6(256(p2)2 + (p4)2)α ′2,

a2 = 7(p2)2p4q1 + 288π2(p4)2α ′ − 56π2α ′2, (4.34)

b1 = −1294(8π)6((p2)2p4)2(256(p2)2 + (p4)2)α ′2,

b2 = 12160π2(p4)2
(

−(p2)2p4q1 + 8π2α ′2
)

α ′,

c1 = 2588(2π)3(p2)2
√

−p4q1α ′,

c2 = 38π
√

− p4q1α ′ .

We can then conclude that, amazingly enough, for small black holes, all found solutions –

BPS and non-BPS – are not stable.

5 Conclusion

In this paper we considered a correction to the black hole entropy due to the most gen-

eral higher order derivative terms in the Einstein-Maxwell action. We demonstrated that

the general form of the corrections to the entropy is in agreement with previously found

results [17]. Provided that the perturbation expansion over classical solutions is valid, the

form of the correction is completely determined by the classical value of the entropy S0

(a homogeneous function of second degree in the charges) and the classical values of the

moduli (a homogeneous function of zero degree in the charges).

The fact that the subleading corrections are singular in S0 drops us a hint that small

black holes are purely quantum objects. In fact, the considered example of the stu black

hole illustrates how small black hole solutions are singular in α ′, so that the standard

perturbation expansion fails and one should find another small parameter to carry out
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perturbation theory (q3 rather than 1/q3). Notice, however, that the inadequacy of the

parameter α ′ as a perturbative parameter for small black holes is valid in general, not only

for the considered example of the stu black hole. The only feature that will depend on

the model is the explicit form of the genuine perturbation parameter corresponding to the

small black hole limit. It would be interesting to find a model independent definition of the

parameter, generalizing its specific realization (4.30) in the model treated in this paper.

We demostrated that the attractor mechanism remains valid in the presence of higher

order derivative corrections, despite the fact that in the presence of flat directions in the

classical black hole potential, the corrections to the entropy apparently might depend on

the undefined moduli. This is made possible by requiring, to each perturbative order in

α ′, the fulfillment of a consistency condition, needed for the existence of a solution to a

degenerate equation system, hence fixing some of the undefined moduli fields. If not all of

the scalars φ0 get fixed, then the group symmetry of the higher derivative corrections is a

subgroup of the symmetry of the black hole potential, hence the higher order corrections

will not depend on these non-fixed scalars.

We established a relation between the black hole potential approach and the entropy

function formalism. The black hole potential can be deduced from the entropy function

by eliminating “superfluous” fields from it. In the presence of higher derivative corrections

this procedure might be quite difficult, if not impossible. Even when deriving the black

hole potential proves difficult, the issue of stability of the solutions can be studied quite

easily, entirely within the entropy function formalism. In this way the stability of the

solutions was studied in this paper. We believe, however, that the validity of proposed

method is quite general and its applicability goes beyond the considered model, and even

beyond the considered class of systems — black holes in four dimensions. Hence, it would

be interesting to further apply the method to study the stability also of extended objects,

such as black strings and black branes, as well as rotating black objects, considered not

only in four but also in higher dimensions.

In this paper we chose a specific model, i.e. the N = 2 d = 4 supergravity model

with stu prepotential, since it is known to possess flat directions in the non-BPS branch [20].

In order to derive a form of the corrections pertinent to this theory, we started from the

action of heterotic string theory [15] with all α ′ corrections included [8]. Consequent com-

pactification down to four dimensions reproduces a stu model with all necessary corrections

included. The most interesting features for us reside in this case in the sector of the axion

fields; therefore we did not make any truncation over the axions.

Apart from the known solutions of the obtained model, we found two more non-BPS

ones. It is noteworthy that one of these solutions acquires no α ′ corrections and it is a

non-BPS solution with zero central charge.

We investigated the small black hole limit of the above mentioned solutions and found

that the solutions found by us are singular in such a limit, while the previously known

solutions become unstable in the sense that the corresponding Hessian matrix acquires

positive, negative and zero eigenvalues. It is of interest to investigate whether this property

of small black hole solutions is general or just a peculiarity in the considered stu model.
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